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'Third-Order'  Elast ic  Coefficients 

BY R. F. S. t t~a~Mo~ 
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The definition of third-order elastic constants, and some of the properties of the associated tensors, 
are discussed. A direct enumeration of the third-order constants is made for all crystal classes, 
and for the isotropic system; estimates are given of the numerical values of certain combinations 
of third-order constants for five cubic materials. 

1. Introduction 

In  the classical theory of elasticity, the strains are 
assumed to be infinitesimal, and the resulting strain 
energy function is a homogeneous quadratic function 
of the strains (Love, 1927). If the strains are not in- 
finitesimal, then terms of the third and higher degree 
in the strains enter into the strain energy function 
(Kaplan, 1931). The energy of deformation of a body 
can then be written 

cp = Cfo ÷ ]clcij~]i j + ]c~CijkZ~]iflTkZ + ]c3CijkZ,nn~ij~kZ~Tm~ 4 .  • • ,  (1) 

where ~]ij are the Lagrangian strain components 
(Birch, 1947), and the c's are material  constants. In 
order to conform with the usual definitions (Institute 
of Radio Engineers, 1949), ]C 2 must  take the value ½, 
and ]c a is here put  equal to 1. 

If the initial energy and the initial cubical dilatation 
of the body are zero, the first two terms in (1) are 
also zero (Murnaghan, 1951) and 

~P = ½Ci]kl~ij~kl÷ Cijklmn~ij~kl~mn ÷ . . .  (2) 
= q% + ~ 3 +  . . . .  ) 

The cijkz are the elastic stiffnesses (I.R.E., 1949); 
they form a fourth-order tensor containing 81 com- 
ponents, of which 21 are independent for a triclinic 
material. As the symmetry  of the material increases, 
the number of independent constants is reduced, until, 
for cubic and isotropie materials, the numbers are 
three and two respectively (Love, 1927). 

The cijkz,n~ are known as the ' third-order'  elastic 
coefficients. They form a sixth-order tensor containing 
729 components, of which 56 are independent for a 
triclinic material. Birch (1947) derived the schemes of 
independent coefficients for all classes of cubic crystals. 
He showed tha t  some of these classes possess eight 
independent coefficients, and the remainder six. Later, 
Bhagavantam & Suryanarayana (1947, 1949) applied 
a group theoretical method to the determination of 
the numbers of independent third-order coefficients in 
each crystal class and corrected Birch's result for one 
of the cubic classes. Their predictions have been in. 
dependently confirmed by Jahn  (1949), who has also 
extended the calculations to include isotropic materials. 

The number of coefficients predicted by Jahn  in this 
case is three, but  Kaplan (1931) had previously in- 
vestigated the form of the strain energy equation (2) 
for isotropic bodies, and had concluded tha t  the num- 
ber of independent third-order coefficients was two 
only. I t  may  be noted here tha t  the isotropic system 
actually contains two symmetry  classes (Jahn, 1949), 
but  that ,  from the point of view of elastic properties 
the two classes are indistinguishable. 

While the present work was in progress, a number 
of workers have independently contributed towards the 
solution of the general problem of third-order elastic 
coefficients. Murnaghan (1951) has given the schemes 
of coefficients corresponding with simple two- and four- 
fold rotation axes, and has indicated in principle a 
method for dealing with three- and six-fold axes. 
Fumi (1951, 1952a, b, c) has derived the schemes for 
all crystal classes, using the 'direct inspection' method; 
Murnaghan (1951) and Kr ishnamur ty  (1952) have 
considered isotropic materials and have given identical 
schemes, containing three independent coefficients for 
these materials. 

The objects of the present paper are to clarify some 
points connected with the definition of the third-order 
coefficients; to discuss some of the properties of the 
relevant sixth-order tensor; to give a systematic 
derivation of the schemes of coefficients for all crystal 
classes and for isotropic materials, using the principle 
of invariance of strain energy; and to discuss briefly 
one physical application of the third-order coefficients. 

2. Def init ions;  and propert ies  of the tensors  

As given by equation (2), the contribution of the third- 
order coefficients to the strain energy is 

q~a = Cij~l,nn~]~j~]kZ~],nn , (3) 

where i, j ,  It, l, m, n may  take any of the values 1, 2, 3, 
and where the summation convention is implied so 
tha t  repetition of a suffix means summation with 
respect to tha t  suffix. Birch (1947), however, writes: 

q~a = "-'r Cpqr~Tp~]q~]r , (4) 
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where p ~< q ~< r, and the summation convention is 
not implied; p, q, and r may take any of the values 
1, 2, 3, 4, 5 and 6, and the relations between the ~Tp 
and the ~# are simply 

~ i = U I : ;  ~ 2 = ~ 2 2 ;  9~3-----T}33; ~4=T]23; U 5 = ~ 1 3 ;  T]6=7112" (5)  

I t  should be particularly noted tha t  the change from 
the double-suffix to the single-suffix notation repre- 
sented by  equations (5) is frequently accompanied by  
the introduction of the factor 2 into those equations 
for which i # j .  For instance, the equations in the 
I .R.E.  Standard (1949) are 

& = 2sx2, 

where S denotes an infinitesimal strain component, 
but  this convention is not followed in equations (5) 
and the ~v are therefore true tensor components. 

The full expansion of equation (4) is given by Birch,* 
and the complete list of coefficients Cpq~ is given in 
column 1, Table 3, where, for convenience, only the 
suffixes are listed. 

The first four terms of equation (4) are 

3 2 2 2 
(~3----~ ClXl~I  -}- Cl12~1~2-}- C:x3T]I~3 -~- Cxx4~xT]4 -~- . . . .  (6) 

In  view of the summation convention, there are thir- 
teen terms of equation (3) which correspond to the 
above four; taking into account equations (5), and the 
relations 

= = e t c . ,  

~# = # j ~ ,  

these terms reduce to 

3 2 
~3  = C111111~1-~-3C111122~1~2 

q-3c:::1aa~aq-6c::::23~7~:+...  , (7) 

and, comparing equations (6) and (7), 

C m  = C:lm:; C m  = 3cm1~2; 
C m  = 3cm:3a; C1:4 = 6cm123. (8) 

Proceeding in this way, the ratio 

can be found, and the values of R for all Cp~ are given 
in column 1, Table 5. 

The application of the strain energy method to the 

enumeration of the independent second-order coeffi- 
cients %~z in all crystal classes is described by Love 
(1927), and it has been applied to the third-order 
coefficients of cubic crystals by Birch (1947). In  the 
remainder of the present paper, this method will be 
used for a systematic enumeration of the independent 
third-order coefficients in all crystal classes, and in 
the isotropic system. 

I t  is convenient to describe the method and to 

* The term Csee~5~ ~ is missing from Birch's equation. 

present the results in three sections, the first dealing 
with the monoclinic, orthorhombic, tetragonM and 
cubic systems, the second with the trigonal and hexa- 
gona{ systems, and the third with the isotropic system. 
Birch's notation is followed, so tha t  the third-order 
constants referred to subsequently are defined by  
equation (4). To avoid the excessive use of suffixes, 
the letter C is omitted from Tables 3 and 5; an ent ry  
111, for example, stands for C m and an entry  3 .111-  
112 for 3Cm-C: :~ .  

3. Method and results: monoclinic,  orthorhombic,  
tetra~,onal and cubic sys tems  

The method is described in principle by  Birch ('1947) 
and applied by him in detail to the cubic system, but  
for completeness, an account of it is given here. 

The invariance of the strain energy with respect to 
transformation of axes is expressed by 

~ '  " J'3 ~ '  " " 2  ' Cl l l~13-~-C112T]2T]2  - } - . ° °  = ~"111{~I) - ~ - ( J l 1 2 ( ~ 1 )  T]2-~- . . . .  

If the transformation is one corresponding with the 
symmetry  of the crystal (i.e. if it is a covering opera- 
tion) then C~:: Cnl, C' = 112 = Cn~ etc. and 

3 2 Cm~Tx+ Cn~:~2 + . -  • 
- -  ' 3  ' 2  t - Cm(~: ) +Cn2(W ) r]2+ . . . .  (9) 

The co-ordinates x:, x~. and x.~ transform according to- 
t the equations: xj = a#x~, or in full" 

X 1 = a11• 1 • a2:x2-4- a a l x 3 ,  
t 

x2 = a12x: + a22x9 + a32x3 , (10 
! 

X 3 ---- a13x1 -}-a23x2 +a33x 3, 

where the a# are the direction cosines. The strains 
transform according to the equations: 

t 
~Tkz = aikait~# , (11) 

where i, j ,  k, 1 = 1, 2 or 3. The usual convention is 
observed in equations (11) whereby repetition of a 
suffix implies summation with respect to tha t  suffix. 

The transformations required for present purposes, 
and the associated direction cosines, are listed in 
Table 1. 

The symbols at  the head of the columns in Table 1 
are based on the Hermann-Mauguin notation (Phillips, 
1946), and correspond wi th  the following elements of 

symmetry :  1 = centre; 2(zl) = rotation through 180 o 
about x:; 2 ( x ~ ) =  rotation through 180 ° about x2; 
2@a ) = rotation through 180 ° about xa; re (x1)= re- 
flexion in plane perpendicular to xx; m(xz) = reflexion 
in plane perpendicular to x2; re (x3)= reflexion in 
plane perpendicular to xs; 4 = rotation through 90 ° 
about xs; 4 = rotation through 90 ° about Xa, followed 
by inversion through a centre at  the origin (Phillips, 
1946). 

The direction cosines in Table 1, when inserted in 
equations (11), lead to the strain components in 
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Table 1. Transformations and direction cosines 

Symbol ]" 2(~1) 2(x2) 2(:v3) m ( x l )  re(x2) m(~3) 

a n = -- 1 1 -- I -- 1 -- 1 I 1 

al~ = 0 0 0 0 0 0 0 
a~. 1 = 0 0 0 0 0 0 0 
a~.~. = - - 1  - - 1  1 - - 1  1 - - 1  1 
%3 = - - 1  - - 1  - - 1  1 1 1 - - 1  

a13 ~ a23 --~ a31 ~ a32 ~-~ 0 

4 

0 
--I 

1 
0 
1 

o 
1 

- I  
o 

- I  

Table 2. Strain components 

Symbol i 2(xl) 2(x2) 2@3 ) m(xl) 
! 

~= ~s ~3 ~s  ~3 ~s  
~ 4 =  ~ ~4 - - ~ 4  - - ~ 4  ~4 
~---- ~5 - - ~ 5  ~ --~ --~ t 
~6 = ~ - - ~ e  - - ~  ~ - - ~  

m(x2) m(x 3) 4 

~3 ~3 ~s  ~3 
--~4 --~4 --~5 --~5 

~5 - - ~ 5  ~4 ~4 
--~ ~e --~e --~6 

Table 2. Finally, these strain components are put  into 
equation (9), a procedure which leads to the vanishing 
of some of the coefficients Cvq ~ for all operations except 

and to equalities among some coefficients for the 
operations 4 and 4. 

Thus, in the case of a four-fold axis, equation (9) 
becomes" 

• 3 2 
CiiiUi + Cli2UiU,+ • • • + C,14U~U4 + .  • • C,22~iU~+ • • • 

3 2 
+ Ce,2~2 ÷ -  • • ÷ C225~2~5+ • •. 

3 2 2 = C, liV2 + Ci,,~IU2+ • • • - C1i4~2~5+ • • • + CI,,U2~2 
a 

÷ . .  • ÷ C 2 2 2 ~ 1 ÷  • • . ÷ C225~2~4 ÷ . . .  , 

and by  equating coefficients of like products of strains, 
we obtain: 

Cnl = C222; Cn2 = Ci,2; 
C,14 = C225 = -C,~5 (i.e. Cna = U2,5 = 0) .  

Proceeding in this way the complete scheme of co- 
efficients can be derived; the results are given in 
Table 3, in which the letter C is omitted, so tha t  the 
entries give the suffixes of the coefficients only. The 
ent ry  in any space has to be equated to the one on 
the same line in column 1. Thus, for example, in the 
tetragonal system, Cni  = Cni (i.e. Cin is independent) 
and Cn4 = 0. The column headings, reading from top 
to bot tom are: (1) name of system, (2) the Hermann-  
Mauguin and the SchSnflies symbols of the classes 
(Phillips, 1946), (3) notes ff any, (4) the number of 
independent coefficients and (5) column number. 

The three columns under 'Monoclinic' correspond 
with different choices of principal axis. I t  is now 
recommended (I.R.E., 1949) tha t  x, should be regarded 
as the principal axis in the monoclinic system, but  
in the older li terature the principal axis was often 
taken as Xa, and the schemes of coefficients for both 
choices of principal axis are accordingly included in 
Table 3. These schemes, and the one corresponding to 
the choice of x i as principal axis, are also required 
in the derivation of some of the results to be given 

later. The scheme for the orthorhombic system 
(column 5) is obtained by combining the results for 
any two perpendicular two-fold axes or of any two 
perpendicular mirror planes (columns 2, 3 and 4). 
The scheme for the sub-division of the tetragonal 
system (column 7) is obtained by combining the results 
for a four-fold axis along x a (column 6) with those for 
a mirror plane coinciding with xlx a or x2x, or with 
those for a two-fold axis along x i or x, (columns 2 
and 3). 

Following Birch (1947), the schemes for the cubic 
system are derived as follows: 

(a) Classes 23, 2/m 3.- -The cubic axes are two-fold 
and the coefficients are accordingly found b y  imposing 
on the scheme for the orthorhombic system (column 5) 
the transformation 

xi-+ x,; x2-> Xa; xs-+ x i .  

This transformation expresses the invariance of pro-. 
perties with respect to cyclic interchange of cubic 
axes, and corresponds with the existence of trigonal 
axes along the cube diagonals. I t  leads to the relations 
among the non-zero orthorhombic coefficients: 

e l l  I = C222 = C833;  e l l 2  = C133 = 0 2 2 3 ;  

On, = C122 = C,33; C m  = C255 = C366; 
Cle6 = C244 = C355; C155 = C26G = C344; 

C i . .  = C12.; C45e = C45e, 

leaving a total  of eight independent coefficients which 
are set out in column 8, Table 3. 

(b) Classes "43 m, 432, 4/m -3 2/m.--The derivation is 
similar to tha t  just  discussed but  the existence of four- 
fold cubic axes leads to the additional relations: 

Cn2 = Cn3; Ci55 = C166, 

leaving six independent coefficients which are set out 
in column 9, Table 3. The numbers of independent 
coefficients in all columns of Table 3 agree with those 
obtained by Bhagavantam & Suryanarayana  (1947, 
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Table 3. 

Triclinic Monoclinic Orthorhombic Tetragonal 
p 

I (CI) 2(C2) Z~(V) 4(C4) 4mm(C4u) 
1' ($2) re(C,) 2mm(C~) ;]($4) ~2m(Fd) 

~ ( v / d  m 4 2 2  D 

Mirror Mirror m m m ( ~ )  
plane - . r 2 z 3  p l a n e -  Xl .~  p lane . -  xl  :p2 

Twofold Twofold Twofold 
axis - Zl axis - .r2 axis - x 3 

56 32 32 32 20 16 12 
(l) (2) (3) (4) • (5) (6) (7) 

11:1, 1 1 1  1 1 1  1 1 1  1 1 1  w 1 l l  ' 1 1 1  
112 112 119. 112 112 11~. 119. 

11' i"  i 11+  0 0 o 0 0 
115 0 115 0 0 0 0 

1 1 6  ; 0 0 1 1 6  0 1 1 6  0 
1 2 2  1 2 2  1 2 2  1 2 2  1 2 2  1 1 2  11R 
IZ,~ 12~ 1=5 l l b  1=5 123 I ~  
124. x 2 ÷  0 0 0 O' 0 
1 2 5  0 1:15 0 0 0 o 
1 2 6  0 0 1 ~ 6  0 0 0 
133 153 I b ~  15~ 15~ 135 153 

~34- 154-  0 0 0 0 0 

i~S 0 1 5 5  0 0 0 0 

1 3 6  0 0 1 5 6  0 . ! ,56 0 
1 ~ 4 -  t 4 - ' ,  ~ 4-4  t 4 4 14.~ 14-4- t 4 ~  
t 4 S  O 0 1,1-5 o 14.5 o 
14.6 o 1 4 - 6  o 0 0 o 
1 5 5  t s s  1 5 5  z s s  ~.55 ~.~$ t S S  

1 5 6  156 o 0 0 o 0 
1 6 6  1 6 6  1 6 6  166 1 6 6  t 6 6  1. 6 6  

1 2 5  222~  2 2 3  ~ : t . !  2 ~ 3  1 1 $  1 1 ~  
2 2 ~  ~ x 4  o o o o o 

2 2 5  0 2 2 5  o o 0 0 

2~1'0 o o 216 o -116  o 

2 ~ 4  2 ~ 4 -  o 0 o o o 

• ~5 0 2~ $ o o o o 

;13(~ o o :I~6 o - I ~ 6  o 
24-4 .  ~ t + 4  ~ . + 4  ~ 4 " ~  2 4 . 4  I s 5 £S$ 
~14.5 0 0 : t÷5" 0 - ~ ÷ 5  0 
2 4 . 6  0 1 4 6  0 o o o 

2 5 5  1 5 5  2 5  s ~ $$ 255  l ' t - ~  1 ~ 4  

: L 5 6  ~ 5 6  0 0 0 0 0 
2 ,66  ~ . 6 6  ~ .66  2 6 6  ~.66 166  1,66 

S % ÷  ~ 3 ÷  o o o 0 0 
~5 0 ~3~ 0 0 0 0 

~ 3 6  0 0 ~56 o o o 

~ - s  0 o ~,4-~ o o b 
~ 4 6  0 ~ 4 6  0 0 0 0 

3 5 6  3 5 6  o o o o o 
3 6 6  3 6 6  3 6 6  3 6 6  ~ 6 6  ~ 6 6  ~ 6 6  

4.44. 4~4 0 0 0 0 o 

445 0 445 0 0 0 0 

4.4.6 0 o 4 4 6  o 44-6  o 
4 5 5  4-:;5 o 0 o 0 o 
• S 6 4-*S 6 4 S 6  4 S  6 4 5 6  4 5  6 4 $ 6  

4 . 6 6  4 6 6  o o 0 0 0 
$ ; s s  .o $ 5 5  o 0 o o 
5 5 6  o o 5 5 6  0 - 4 4 6  o 
5 66  0 5 6 6  o o o 0 
6 6 6  0 0 6 6 6  o o o 

Cubic 
_ 

2 3 ( ~  ]3m (T~) 

m2_glTh) 432 (o) 
4"32  0 

8 6 
~8) (9) 

I 
1 1 1  i l l  
11~L t l J L  
z l b  t l : i  

O o 

O o 
O O 

1 1 3  $12  

12.5 1~.~ 
0 0 
0 0 
0 0 

112.  1 1 2 .  
0 0 
0 0 
0 0 

• 44 14-4- 

o 0 

o 0 

1 5 5  t S $  
0 0 

166 155 

111 111 
112 111 

o o 
o 0 
o o 

115 112 
o o 
0 o 
o o 

1 6 6  1 S S  
0 0 
0 0 

144- 14-4. 

0 0 
1 5 5  1 s s  
111 112 

0 0 
0 0 
0 0 

1 S S  l S 6  
0 0 
0 0 

1 6 6  1 5 5  
0 0 

144- ~ 4 ~  

0 0 
0 0 

0 0 

0 0 
4 5 6  4 5 6  

0 0 
0 0 
0 0 
0 0 
0 0 

1949) and Jahn (1949); the actual schemes also agree 
with those derived by Fumi (1951). 

4. Method and resul ts :  tr igonal  and 
hexagonal  sys t ems  

In order to deal with the trigonal, hexagonal and iso- 
tropic systems it is necessary to consider a general 
rotation about the x 3 axis through an angle 0. In this 

case, the direction cosines in equations (10) become, 
for a pure rotation, 

a n =m, a2i = n ,  aai----0, 
a 1 2  = - - n ,  a 2 2  = m ,  a82 = 0 ,  

az3----0, a23=0,  a38= 1 ,  

where m = cos 0, n = sin 0. Substitution of these 
direction cosines into equations (11) leads to the 
known transformation equations for the strain com- 
ponents: 
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r]~ = n % h  + m%]~--2mnr/e  , 

~3 = ~3 ,  

~7~ = m~7~--n~]5 , 
t 

~6 = -- m n r h  + mnr]2 + ( m2 --  n2) ~s . 

Further 
leads to 
Appendix). 

(12) 

substitution of equations (12) in equation (9) 
the systems of equations (A1-A10) (see also 

Equations (AO 

C'm 

C~l~ = m6 

C,,z= 3r~ ~ 
C , i b  = 6n~n 

C ~2~ : 3m~n" 

C~z~= 12m3n s 

C156 = 12nfn z 

C ZZ2 = n 6 

C zz~:  6mnS 

C 266 ---- 12 man 4 

C e,~e = 8 n ~  

The vMues of a]z.. .a33 for trigonal and hexagonal 
axes are set out in Table 4. 

Axis 
a l l  = 
a21 = 
az2 = 

a22 = 
a33 = 

Table 4. Values  of  a z z .  . . a3a 

3 "3 6 "6 
- ½  ½ ½ - ½  

½l/3 --½1/3 ½l/3 --½1/3 
- - ½ l / 3  ½l/3  - - ½ ] / 3  ½1/3 

- ½  ½ ½ - ½  
1 --1 1 --1 

a13 = a23 = a31 = a32 = 0 

C; ,z  

m4n 2 

m~÷ 2 m~n '~ 

i 4 m ~ -  2mSn m~- S m% z 

2rr~Z+n 6 2 mSn ~ mns 

4mSn- 4 n ~  4mn s 6m~nZ- b m~n 4 

4 n?n~- 8 m',n z 4 mSn-8rrPn s 

mZn 4 mns 

4n~n ~- 2 mn ~' 5 n~n4- n e 

4m~n ~- 8mZn • 8 rn~-4mn s 

-8 mSn 3 4 ~n~- 4 rn~n 4 

C;,~ C ' ~  

_ mSn mZn • 

~ n  - 2 rnSn s 2 ~ n  z+n ~ 

i2mn s- 4 ~ n  s 

2mZn% m • 

C~o C~oo 

- ~ n  s 

ngn L mSn - m n s 

3m~n z- 3mZn * 

mSn, m n s- mSn ~ 

C;.~ C'z~ 

~ n  z n ~ _ mn s 

r~n ~- 2 ~ n  z 3mZn 4 mn s- 2 ~ n  ~ 

4 ~ n  z- 2 mSn -bran s :Srn~n a- n ° 

m~nL2~n 4 3rdn z 2 ~ -  mSn 

4 m~- 4mnS- 4rrr~n 

4Mn ~- 8 r ~  4 

m4n z 

2 n?n - 4 m3n s 

4 mZn ~ 8 m% z 

8 m3n s 

me-b rn4nZ 6 r~n 4- n 6 

8 r r r~  2 mSn-2mn s 

r~n 3 

3 n~nZ.- 3n~n 4 

2 m n s- 8 mSnS* 2 mSn 

4 rr~$ 4 m4n z 

2rrPn, 2mnS-Bn~n s -12rr~ ~ 6 ~ n ~ b m ~  4 

m~, 5rrr~- b rnCn s 12rr~ '~ 4.m nS-- 8 ngn s 

rnZn ~ m e mSn 

4 ~ n  s- 2 m n s - b mSn m ~- S m% z 

S m';n~- 6 m~n4+ n ~ 12 m';n z 8 m~n~ 4.mSn 

2mSn -4ngn'!. 2ran s 8ngn ~ 4m%Z--4m~ 4 

C'zoo 

mZn 4 

n~'n z- 2 mZn '~ 

2 m n s- 4 ~ n  s 

rnZn,L 2m~n z 

S~n 3- 2 n~n- 2 rnn s 

5m4n ?- 6 rn~% n o 

rn~n z 

2mSn - 4n~n s 

me.- b ~n~. 5n~n 4 

4.~n~2 mSn-2 mns 

- n~n 3 

3 ~ n  s 

3 rrfn z- 3 rn~n 4' 

- 3 m~n z 

bn-~¢ brr#n z 

b n?nS- 3 mSn -3ran s 

rr~ s 

3 m4n z- 3 mZn ¢ 

3rnSn - 6rnSn~+ 3 mn s 

m¢3 n~nZ+3 mZn'~ n ~ 

Equations 

Ci i  6 : 

Ci15 -" 

Clz4. = 

Clzs ~ 

C 146 -" 

CI56 = 

Czz# = 

Czzs = 

Cz4.8 ~ 

Czs6 = 

C 466-" 

Cs66 ~ 

('A2) 

C;,, Chs 

m s m~n 

-n~n 

2 ~ n  z 2mZn ~ 

-2mZn s 2m~n z 

4m4n 4 ~ n  z 

- 4  m~n z 4m~ 

mn 4 ; nS 

-n  s mr~ 

4mZn 3 4mn4! 

-4ran '~ 4rn~nZ i 

4n~n z 4mZn ~ 

-4m~n s 4rrPn z 

c(~,~ c~s Cho c;s6 ch ,  c;~ c ~  c~s~ 

n~n z m2~ - rr~n - m~ z mn 4 n s - mZn s -mn 4" 

-mZn 3 r~n:' rnSn z -m4n !-n s mn 4 mn 4 -mZn 3" 

mS+ran • rn4n, n s ~n_  mZn s ~n~.mn ~" 2 ~ n  z 2m~ s rr~S- m4n mn~ ~ n  z 

-m4n- n s ms~- mn 4 mn*'-mSn z rr~n- n ' ~  -2mZn ~ 2mSn z m3n~- mn 4 mZn~ m4n 

2mZna-2m4n 2mn~-2nPn z mS-3ngn z m ~ - 3 m ~  - 4 m ~  ~ -4mn  ¢ 3~n~-mn 4 3mZnLn s 

2m~nZ-Zmn 4 2mZn~-2m4 n 3mZnZ-m4n mS-3mSn z 4mn '~ _4mZnS nS-3mZn s 3mSnCmn 4 

rr~n z mZn ~ mZn ~ mn ¢ m S m4n m4n nSn z 

- m~n ~ n~n z -mn ~, mZn 3 -n~n m s _ m3n z m4n 

2n?n-2m~ s 2~n~.2mn 4 3m~nZ-mn 4 3mZn~n s -4rrffn -4m~n z mS-3~n z m%-3mZn s 

2mn~-2m~n; 2n~n-2m~ s n s- 3mZn s 3n~nZ-mn ~ 4 ~ n  z -4m'~n 3mZn3-rrPn m s- 3mSn z 

-4mSn z -4mZn ~ 2m'n-2mZnS 2 ~ n Z - 2 m n 4 j 4 ~ n Z  4mZn s 2mZn ~- 2m~ 2mn~-2mSn z 

4m2n :s -~ . l~n 2 2mn~-2n~n z 2m4n-2mZn s -4m2n s 4.mSn z 2mSn~-2mn 4 2m~n3.-2m4n 

C~.~6 C~66 

m3n z 

_ mZn 3 

- 2 nPn z 

2mZn 3 

2 mZn~-2 m4n 

2mSnZ- 2 ran'; 

m3n z 

_mZn s 

2m4n - 2 mZn ~ 

2mn';-2 mSn z 

m s.. 2 mSn z mn 4 

2 mZn~ m4n .n  s 

rr~n 3 

rr~n z 

- 2 mZn ~J 

- 2. m3n z 

2mn 4- 2m3n 2 

2 mZn 3- 2 m4n 

mZn 3 

mSn z 

2mSnZ-2mn 4 

2m4n -2mZn s 

m4n - 2mZnS÷ n: 

m s̀ - 2 mSn2+ mn 4 

Equat;ons (A3) 

C;is C~z3 C~6 Czz3 C'~36 C'36~ 

C . s  = m 4 mZn z -mSn n 4 -ran s mZn z 

Cizs = 2m znz m%n 4 mSn-mnS 2m znz mn~mSn -2m znz 

C l s e =  4-m~n 2mn~2mSn m~3mZn z -4ran 3 3mZnZn4' 2mn~-ZmSn 

C zzs = n 4 mZn z mn 3 m 4 mSn mZn z 

Czse=  4mn 3 2mSn-2mn ~ 3mZnZ-n 4 -4mSn m'L3mZn z 2mSn-2mn s 

Csoe = 4.mZn z .4mZn z 2mSn-2mn s 4mZn z 2mnL2mSn m4-2mZnZ, n ~ 

Equahons (A4) 

C=34 = m3 mZn mnZ nS -man °mnZ 

Ciss = -m zn m s -nS mnZ mnZ -mZn 

C zs,l.: m n2 nS mS rnZn m~n imnZ 

Cz3s= -n3 mn z -m~ m s -ran z mZn J 

C34e= 2mZn 2ran z -2mZn -2ran z mS_ran z mZn-n s 

Csso= -2rnn z 2mZn 2mn z -2mZn n~-mZn mS_ran z 
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Equations CAS) 

Ch~ C~4s C;ss 

Ct44 = m~ m~n rnZn z 

C.4s = -2mSn m ~-mznz 2 m~n 

C,ss = mZn z -mSn .14 

Cz4, = mZn z mn ~' n* 

!Cz~s = -2ran s mZnZ..n4 2ran '~ 

Czss : n 4 -ran ~ mZn z 

C4~6 = 2m~n 2mZn z 2mn s 

C4s6= -4mZnZ:Zm~n-2mn s 4m~n t 

Csse =j2mn ~ -2mZn z 2m~n 

C~,~ C~,s Ch, 

-nZn z mns n 4 

- 2 m n  ~ mZnZ- n 4 2ran ~ 

n 4 -rna 3 mZnZ 

m 4 rn3fl mZn z 

-2m~n m*-mZn z 2mSn 

mZn z -m~n m 4 

-2m~n -2mZn z -Zmn 3 

4mZn z 

-2mn ~ 

- rrl3n - n'l~ ;' -ran s 

2m~n z mn~-m-~n -2mZn z 

-mn$ mZn z .m~n 

m~n i mZn z mn ~ 

-2 mZn z mSn - mn s 2mZn z 

mn s - man e m3n 

m 4- mZn z m~n- m n ~ mZnZ-n a" 

2 mSn- 2 mn ~ 

m~_mZn z 

2mn~2m"r -4rnZn z 2mn3-2mSn m~2m".nZ~n', . 

2man z -2m~n ,nan'- n 4 rnn~rnSn 

Equations ~Ab) 

[ C,~s : m r C[n # n zC.~s~ - mnC;s6 

C2n n z Cl~s + mZC~n + mnC~s6 

C~3e 2mnC,'s~-2mnC~.3s+(mZ-nZ)C~s6 

Equations CA'/) 

i ,~, .-, +nZC~ss C~44 ffi m ~-34.4+mnk~345 

Cs4s -2mnC~44+(m2- n')CLts+ 2 mnC~ss 

ICsss n z C344- mnCi4s + mZC;ss 

Equations CAB) 

C44.¢= msC,.4.4 +manC',4s +mnzc~ss÷ n3Csss 

C4ss : 3m z C~44 + (nL 2 man) C~4s + (m 3- 2 mn z) C ;.ss + 3 man C~,ss 

Csss : - n~C ~44 ÷ mnZC~.4s - m an C;,ss ÷ mSC ~ss 

Equations (A9) 

: . . .  : "mCh. 'nCAs  I 

3~s -nC{3. +taChs 

Equation (AIO) 
lc333 "Ch31 

The direction cosines for 3 in Table 4 correspond to 
a rotation through 120 °, followed by inversion through 
a centre at the origin, and those for 6 to a rotation 
through 60 ° followed by inversion through the centre 
(Phillips, 1946). These direction cosines are obtained 
simply by reversing the signs of those for the simple 
axes; it is easy to verify that this change leaves the 
strain transformation equations (12), and therefore 
equations (A1) to (A10), unaltered. 

Substitution of the values of m and n from Table 4 
into equations (A1) to (,!10) leads to systems of 
simultaneous equations with numerical coefficients, of 
which the solutions are given below. 

Equations (A 1): trigonal and hexagonal systems 
C122 = 3 C l l l + G l 1 2 - 3 G 2 2 2 ;  
Gxee = - 6(7111- Cn2 + 9C222; 
Cgee = 6 C n l -  Ca2-  3C9~2 ; C12e = - 2Cue; 
G226 = Cll 6 ; C666 ~--- --~Cll 6. 

Equations (A2): trigonal system 
C15e = 2Cn4+3C124; C224 = -Cn4-C124; 
C256 = 2Cu4-- C124 ; C46e = 2C12 ¢ ; 

C146 = _ 2 C n 5 _  3C125; C225 = _ C l l  5 -  C125; 
C246 = - -2Cl15+C125;  C566 = 2C125. 

Equations (A2)" hexagonal system 

0114 = C n 5  - O124 - 0125 = 0146 = 0156 ----- 
C224 = C225 = C24e = C25e = C46e = Csee = 0. 

Equations (A3): trigonal and hexagonal systems 
C13 e = C236 = 0; Cll 3 = C223; C366 = 2Cl13-C123, 

Equations (A4): trigonal system 
C234 = _C134; C356 = 2C12 4; C235 = _C135; 
C34e = -2C135. 

Equations (A4): hexagonal system 

Equations (AS): trigonal and hexagonal systems 
c.~ = -c~,~ = c~ = -c~; c~ = c~; 

Equations (A6): trigonal and hexagonal systems 
C133 = C233; C33~ = 0. 

Equations (A7): trigonal and hexagonal systems 
C344 = C355; C845 = O. 

Equations (A8): trigonal system 
c,~ = -3o~,; o~ = -~o,,s. 

Equations (A8): hexagonal system 
C4,  = C,5  = C455 = C555 = 0. 

Equations (A9): hexagonal and trigonal systems 
C324 = C335 = 0. 

Equation (A10): hexagonal and trigonal systems 
c333 = c333. 

The above results are summarized in columns 3 and 
5 of Table 5, where, just as in Table 3, the letter 0 
is omitted. Reading from top to bottom, the column 
headings give: (1) name of system, (2) the Hermann-  
Mauguin and the equivalent SchSnflies symbols (Phil- 
lips, 1946), (3) the number of independent coefficients, 
(4) notes, if any, and (5) column number. 

The results for the hexagonal system can al- 
ternatively be derived quite simply from the trigonal 
coefficients by combining the results for a three-fold 
axis along x 3 (column 3, Table 5) with those for a 
two-fold axis along x a or a mirror plane xzx~ (column 4, 
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Table 5. 

T r i c l i n i c  Trigonal 

I (el l 3(C3) 3m(C3u) 
~ ($2) ~{C30 32(D3) 

$2103~) 

Mir ror  
plane - x2x 3 

Twofold 
axis m ZI 

56 20 14 
(!) (2) (3l 141 
1 111 111 t lt[  

31~,  l l ~ .  119. 

3 11~ ~.1~ 113 

6 114 11@ 114. 

6 t tG t l .6 0 

3 gg:t ]}.lS l-t'll~L --3.P.~ t..311÷ 11~-~.9R2. 
12~ t53 l:t~ 

1~. 1"J.$ 1~5 o 

1~. 126 -~ ,  11~ 0 

3 ~53 t33 133 
Ig IS4. I$'t  I.~'l, 

19. I lb5 t35 o 

19. 14"4 14'4 14-4" 
:L+ 14-5 145 0 

~.4- 146 -:t .115-3.12~ 0 

L2 155 I~5 IS~ 
• ,!- 156 I. t t  4,÷5.1~4 ~. ~ ~,tl-3.1~t,t 

t~L 166 "6.~L11 - 1 : L $ , + ~  --6.111-119.÷ 9.~L~ 

t ~.12 ~ 2 2  :1~9 

$ 22b 11~) LL~ 

6 a l~  -11'4"--124 - - 1 1 4 ~ 4 "  

G ~*J5 011~-125 0 

6 2.26 116 0 

3 z~b ~33 1~3 

12 ~ 5  - l~S 0 

11 2~6 o o 
12 ~L44 15'~ 1$'~ 

:~+ X46 .~ .115+~$  0 

1~. 25 $ 14'4. 144 

14  ;t$6 5 . tH- -zz4 ,  ~ . 1 3 4 - Z ~  

't9. 26 6 6-111-112.-.'.~ 12"$. 0.111 - 1 l : t  -.~.2JUI. 

6 33÷ o o 

6 ~,:15 0 0 

6 336  0 0 
11 $4.4- 344. $44" 

~.'I. ~ 5  0 0 

~ 346 -~,15~ o 
l : t  355 64.4. t~.4. 

:t,I. 356 ~.. ~4. 2.1b, I. 

11 $66  :t.11~-12b g. l lS- l~ tJ  
8 44.4. 44.4. 444. 

;~4, 4.4$ 445 0 
~,~ 446 145 o 

,4" 4'$$ -3.  *t4~ -B,44~ 

4~6 2,.1S$ - 2.14.4. 2.1'.~-~ J.44. 

~t'5. 4 6 6  ~. 1.54. ~1~.,~ 

$S6 - ~ 4 $  
$ ~  :k.15~8 

6 ~ ,  _ . , - ~ . . ~ l s  o 

Hexagon-I Isotropic 

6(Cs) ~ m 2 ( ~ )  
B ( C3~) 6m m (C6v) 
~ - ( C ~  622 IO6) 

6 2 2  

12 IO 
(5) l (6) 

1 ~  ¢ t t  

312 3t~t 

113 i 113 
! 

0 0 
0 o 

116 0 

3.3U t- 11X-'~.221 3 .".I.I't.IP 11.~-~.JUI.2 

1~.3 113 

0 0 

• - , 2 = 6  o o 

1~3 1'$3 

0 0 

0 0 

0 0 

Ut4. 144" 
~.S 0 

0 0 

135 15S 

O O 
- 6.111--11~l. 4- gl.2'Jl~ --6.11g - ll~÷~.2~Jt 2, 

111 

113 113 

o o 

o o 
I16  o 

3tJb 133 

o o 
o o 

o o 
tss  155 

=, ° 
144  

0 0 
6.111- ls~t - &~.t~L 8 .1 i l  - t  ~ , - !h121 

J35 3J~ 

0 0 

0 0 

0 0 
844. 344. 

0 0 

& ° 

o 
2 . 1 L ! ~ 3  [ : t .11 , -  12.3 

o [ o 
o ; o 

o o 

o o 
o o 

, . °  0 ° 
- , o 

1.11 

I t 2  
l t i .  

o 

o 

o 

112, 

o 

o 
o 

11.5. 
Q 

o 

o 
L i t 2 - 1 . ~ i  

o 

o 

o 

5.111--11~ 

115 

111. 

0 

0 

0 

11% 

0 
0 

L 1 u f l  1~. 

o 

o 

3 . u 1 - 1 1 ~  

111 

o 
o 

o 
&11.1-113. 

o 

3.1uf13:t. 

o 
:t.tt.'t- 3:13 

0 

0 
0 

0 

6 . t l l  - 6.liT. 4.~L413 

0 

0 

0 
0 

0 
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Table 3); this derivation is related to those discussed 
by Fumi (1952a, c). Column 4, Table 5, is derived by 
combining the results of column 3, Table 5, with those 
of column 2, Table 3; and column 6, Table 5, by 
combining column 5, Table 5, either with column 2 
or column 3, Table 3. 

The schemes of independent coefficients in columns 
3-6, Table 5, agree with those given by Fumi (1952b), 
but  it is necessary to note tha t  Fumi's  table 
refers to the c~]kzmn constants, and in comparing his 

A C 6  

results with Table 5, the complete set of equations 
similar to (8) must  be taken into account. For example, 
Fumi gives an equation which in the present notation 
is: 

C 1 1 2 2 2 2  = C 1 1 1 1 1 1 - - C 2 2 2 2 2 2 " ~ - C 1 1 1 1 2 2  ; (13) 

Now from column 1, Table 5, 

C 1 2 2  : 3c1129.22 ; C l l l  = C 1 1 1 1 1 1  ; 

C222 = fi222222; CI12 = 3 C 1 1 1 1 2 2 "  (14) 
2 2  
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Substituting (14) in (13): 

½012 2 = Cil i- 022 2 Jr ½Cl12, 

i.e. Cx~9. = 3Cnl-3C29.9.+Cxx~ , 

in agreement with the entries in Table 5. 

5. I so t rop ic  sys t em 

Column 7, Table 5, headed 'Isotropic', actually gives 
the scheme of constants obtained by combining the 
results for maximum symmetry in the cubic and 
hexagonal systems (column 9, Table 3 and column 6, 
Table 5). This scheme contains three independent 
constants, in agreement with the number predicted 
by Jahn (1949) and by Venkatarayudu & Krishna- 
murty (1952); the actual scheme of coefficients also 
agrees with those given by Murnaghan (1951) and 
Krishnamurty (1952). 

The full form of ~a from column 7, Table 5, is: 

3 2 2 2 
9?3 = Oiil?]l d- 0i127]i?]2+ 0112T/i?]3 ~- 0i127]i/}2+ 01237]i?]2713 

9. 2 -4- ~ii9.?]i?]3-~- (201i9.- 0123)?]i?]4 ~- (3Cili- Cii~)?]i?]52 
+ (3Cln -  Cn~)?]lU~ + Cm?]~ ~ 9. + Cn~.?]~?]3 + Cn~.?]~?]3 

2 2 + (30111- Cn~)?]~?]4+ (20n2-  0123)?]~?]5 
2 3 

-~- (30111 - -  Cl19.) ?]2?] 6-4- 0111713 -~- (30111 - 0112)?]3?] 2 

+ (30~11- o11~)v~v] + (2011~- c.3)?]3v~ 
+ (6Cn l -  60119. + 20123)?]4?]506 • (15) 

In terms of the invariants of strain (Love, 1927) 

I1 = ~1+?]2+?]3, 
2 2 2 

I 9  = ~2713-- ?]4 + ?]1713 - ~5 "~ ?]1~72 - -  776 , 
2 2 2 

I 3  ---- ?]1112713 -~- 2714715716-- ?]1714 --  ?]2?]5 - -  ?]3?]6 , 

equation (15) becomes: 

~a = Cl11(I~ + 3 [ I 3 - I ~ I ~ ] )  

+ C n g . ( I l I 2 -  3/3) + 012313 • (16) 

If the fundamental constants are taken as Cnl, C155 
and C456, equation (16) can be written rather more 
simply as : 

= 1 (17) ~3 C l l i I ~ -  0i55Il i2  + ~045613 • 

I t  is well known (Love, 1927; Murnaghan, 1951) that  
for terms of the second degree in the strains, 

q~2 = ½(~+2#)I~-2/~I~, (18) 

where ~t and }~ are the Lam6 constants expressible in 
terms of the usual second-order elastic constants by 
the equations 

~-3L2~ = Cll , /~ = C66 = ½(011--012 ) . (19) 

Thus, when terms of the second and third degree in 
the strains are taken into account, the strain energy 
of an isotropic body is, by equations (2), (17), (18) 
and (19), 

2q? = ciiI~l - 406619. + 2Cinl i  a -  2 C i ~ I l I ~  + C4~613 • 

As mentioned earlier, Kaplan (1931) found that  ~a 
contained two coefficients only; in forms of the present 
notation, the additional relation found by Kaplan is 

0~23 = 2Cng.-301n. 

Kaplan derived this equation by considering the most 
general rotation of the axes, i.e. one in which all of 
the direction cosines in equations (10) differ from zero, 
but the exact details of the derivation are not clear, 
and the writer has been unable to verify it. (An 
attempt to communicate with Dr Kaplan was un- 
successful.) 

I t  does not seem possible, however, for a relation 
of this type to exist without the introduction of 
special assumptions such as those discussed by Herpin 
(1949). Equations (16) and (17), which have now in 
effect been derived independently by Murnaghan 
(1951), Krishnamurty (1952) and the writer, show that  
~3 is expressible in terms of three coefficients and of 
the three strain invariants. By hypothesis, the co- 
efficients of an isotropie solid are invariant for any 
rotation, and so, of course, are the strain invariants. 
Thus the imposition of any rotation whatsoever on 
equations (16) and (17) will simply lead to an identity 
and there can be no further reduction in the number of 
independent coefficients. 

6. A physical  appl i ca t ion  

Direct application of the concept of third-order elastic 
coefficients to physical problems is limited by two 
circumstances, one theoretical in that  the algebra 
becomes very complicated, particularly when applied 
to crystal systems containing large numbers of co- 
efficients, the other practical hi that  application of 
high stresses to crystalline' materials usually results in 
slip along definite planes, a mode of deformation to 
which the third-order coefficients do not apply. 

Birch (1938), however, has minimised the first 
difficulty by considering isotropic materials, and 
materials belonging to the cubic group of maximum 
symmetry (Birch, 1947), and has avoided the second 
by dealing with an arbitrary homogeneous infinitesimal 
strain superimposed on a finite hydrostatic strain. 

A specific problem solved by Birch (I947) is the 
effect of hydrostatic pressure on the elastic stiffnesses, 
c~k, of a material belonging to the cubic group of 
maximum symmetry and therefore possessing six 
independent third-order constants. For such a material, 
Birch derives the equations 

C~l = Cn+?] (2Cn+2c l~ .+6Cnx+4Cn~ , )  , ] 

C;2 ~--- C12 ~- ?](0123 -~- 4 O l 1 2 - -  Cll  - -  C12),  ] ( 2 0 )  

c~4 = c44 + ?](Cn+ 201~ + c44 + ½Cm + 0i66), 

where Cn, c19 and c44 are the stiffnesses measured at  
zero hydrostatic pressure; the primes denote the 
apparent values of the stiffnesses measured under a 
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Horizontal Scales: - 1 0 3  
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hydrostatic pressure P ;  and ~ is a quantity defined 
by the equation 

V/Vo = (2+2~)~, (22) 

V 0 being the original volume and V the volume when 
compressed by the pressure P. 

The apparent stiffnesses of the cubic crystals 
KC1, NaC1, CuZn, Cu and A1 have been measured by 
Lazarus (2949) up to hydrostatic pressures of 20,000 
bars, using a pulse transmission method. Lazarus 
plotted the ratio ci'k/ci~ against P and obtained 
straight-line relationships. If, however, equations (20) 
are correct, the ratio should be a linear function of ~]. 
The conversion from P to ~ is easily accomplished 
with the aid of equation (21), in conjunction with the 
equation 

1 -  V/Vo = a P -  bP 9 , 

using for the purpose the values of a and b recorded 
by Lazarus for his five materials. 

The resulting graphs are shown in Fig. 1, from which 
it can be concluded that  the use of ~ in a straight-line 
relationship with Ci'k/Cik is empirically as justifiable 
as the use of P, and, from a theoretical point of view, 

the use of ~ is preferable since it is in accordance with 
equations (20). 

Assuming the correctness of these equations, esti- 
mates can be made of the numerical values of the 
combinations (6Cl11+4Cl12),  (C1~3+4Cl12) and (½C144+ 
Cle6). In fact, denoting these combinations for brevity 
by Ca, Cb and Cd, it follows from equations (20) that  

where 

C a --- C118a--2(C11+C12),  ] 

C b = C128b-~-Cll--}-C12 , i C d --  c448 d - C l l - 2 c 1 2 - c 4 4  , 

Sa is the slope of the (c~l/cn) v. ~l graph,  
sb is the slope of the (c~2/c12) v. ~ graph,  
sd is the slope of the (c~4/c44) v. ~] graph.  

(22) 

Numerical estimates of aa, sb and s~ were obtained 
from Fig. 1, drawn to a larger scale, and these, when 
inserted into equations (22), together with the zero 
pressure stiffnesses measured by Lazarus, yield the 
values of Ca, Cb and C~ given in Table 6; it is of 
interest that  all of the C's in  this table are negative, 

22* 
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and are numerically about an order of magnitude 
larger than the stiffnesses cir. 

Material 
.Oa 

Ob 
V~ 

Table 6. Third order constants 

Unit = 1011 dyne cm. -2 

KC1 NaC1 CuZn Cu A1 
--81 --100 --208 --249 --225 
- -  1 . 5  - -  1 4  - - 1 1 4  - - 1 3 3  - -  3 2  

- -  3 . 5  - -  1 1  - - 1 3 5  - -  8 4  - -  7 4  

The information on the third order constants 
yielded by the above treatment is unavoidably in- 
complete in giving effectively only three constants out 
of a possible six. In addition, the values obtained are 
probably not highly accurate, since they contain not 
only the original errors of the experiments, but also 
the errors associated with reading the values from 
Lazarus's graphs. I t  appears, however, that  no 
numerical estimates of the third-order constants have 
hitherto been published, nor have methods of measur- 
ing them been suggested, and the present analysis has 
been carried out as a first step in remedying these 
deficiencies. 

In principle, solutions for the effect of hydrostatic 
pressure on stiffnesses could be obtained for materials 
of any symmetry by appropriate modification of the 
treatment applied by Birch to cubic materials, but the 
labour involved in the mathematical development 
would be considerable, and might be prohibitive for 
systems of low symmetry. 

In the case of isotropic materials, the relations 

C44 = ½(C11--C12 ) 

reduce the three equations (20) to two: 

' +v(2  +2  + c )  Cll  = Cll Cll  C12 a , 

~ 2  -~ C12 ~-~(Cb--C11--C12) • 

Experiments similar to those of Lazarus, if carried out 
on isotropic materials, would therefore effectively yield 
two out of the three independent third-order constants, 

b u t  the data required for these calculations are not at 
present available. 
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APPENDIX 

Equations (A1-A10) above are the transformation 
equations for the third-order coefficients corresponding 
to a rotation through an angle 0 from x 1 towards x 2 
about the x 3 axis. The equations are to be read 
horizontally, e.g. 

Cn 1 --- msC~n Jr m4n2Cll2- msnC~ls + . . .  , 

where m -- cos 0, n = sin 0. 
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