Acta Cryst. (1953). 6, 331

331

‘Third-Order’ Elastic Coefficients

By R. F.S. HEaArRMON
Physics Section, Forest Products Research Laboratory, Princes Risborough, Aylesbury, Bucks., England

(Received 14 June 1952 and in revised form 1 October 1952)

The definition of third-order elastic constants, and some of the properties of the associated tensors,
are discussed. A direct enumeration of the third-order constants is made for all crystal classes,
and for the isotropic system; estimates are given of the numerical values of certain combinations

of third-order constants for five cubic materials.

1. Introduction

In the classical theory of elasticity, the strains are
assumed to be infinitesimal, and the resulting strain
energy function is a homogeneous quadratic function
of the strains (Love, 1927). If the strains are not in-
finitesimal, then terms of the third and higher degree
in the strains enter into the strain energy function
(Kaplan, 1931). The energy of deformation of a body
can then be written

@ = @otkyCiMij+ EsCojuminia+ EsCjimnNi e+ - -+ » (1)

where 7; are the Lagrangian strain components
(Birch, 1947), and the ¢’s are material constants. In
order to conform with the usual definitions (Institute
of Radio Engineers, 1949), k, must take the value },
and k; is here put equal to 1.

If the initial energy and the initial cubical dilatation
of the body are zero, the first two terms in (1) are
also zero (Murnaghan, 1951) and

® = Mt CoitmnNiMeimn+ + + - } @)
= Qg +@z+... .

The c;;; are the elastic stiffnesses (I.R.E., 1949);
they form a fourth-order tensor containing 81 com-
ponents, of which 21 are independent for a triclinic
material. As the symmetry of the material increases,
the number of independent constants is reduced, until,
for cubic and isotropic materials, the numbers are
three and two respectively (Love, 1927).

The ¢y are known as the ‘third-order’ elastic
coefficients. They form a sixth-order tensor containing
729 components, of which 56 are independent for a
triclinic material. Birch (1947) derived the schemes of
independent coefficients for all classes of cubic crystals.
He showed that some of these classes possess eight
independent coefficients, and the remainder six. Later,
Bhagavantam & Suryanarayana (1947, 1949) applied
a group theoretical method to the determination of
the numbers of independent third-order coefficients in
each crystal class and corrected Birch’s result for one
of the cubic classes. Their predictions have been in-
dependently confirmed by Jahn (1949), who has also
extended the calculations to include isotropic materials.

The number of coefficients predicted by Jahn in this
case is three, but Kaplan (1931) had previously in-
vestigated the form of the strain energy equation (2)
for isotropic bodies, and had concluded that the num-
ber of independent third-order coefficients was two
only. It may be noted here that the isotropic system
actually contains two symmetry classes (Jahn, 1949),
but that, from the point of view of elastic properties
the two classes are indistinguishable.

While the present work was in progress, a number
of workers have independently contributed towards the
solution of the general problem of third-order elastic
coefficients. Murnaghan (1951) has given the schemes
of coefficients corresponding with simple two- and four-
fold rotation axes, and has indicated in principle a
method for dealing with three- and six-fold axes.
Fumi (1951, 1952a, b, ¢) has derived the schemes for
all crystal classes, using the ‘direct inspection’ method ;
Murnaghan (1951) and Krishnamurty (1952) have
considered isotropic materials and have given identical
schemes, containing three independent coefficients for
these materials.

The objects of the present paper are to clarify some
points connected with the definition of the third-order
coefficients; to discuss some of the properties of the
relevant sixth-order tensor; to give a systematic
derivation of the schemes of coefficients for all crystal
classes and for isotropic materials, using the principle
of invariance of strain energy; and to discuss briefly
one physical application of the third-order coefficients.

2. Definitions; and properties of the tensors
As given by equation (2), the contribution of the third-
order coefficients to the strain energy is

P3 = CijktmnMiiN ki mn » (3)

where i, j, £, [, m, n may take any of the values 1, 2, 3,
and where the summation convention is implied so
that repetition of a suffix means summation with
respect to that suffix. Birch (1947), however, writes:

@5 = 2 0pqr"7p7]q77r s 4)
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where p < g <7, and the summation convention is
not implied; p, ¢, and r may take any of the values
1,2,3,4,5 and 6, and the relations between the Np
and the 7);; are simply

M="115 N2a="225 Ns3="s35 Na="23} Ns="13} Ne="12- (5)

It should be particularly noted that the change from
the double-suffix to the single-suffix notation repre-
sented by equations (5) is frequently accompanied by
the introduction of the factor 2 into those equations
for which ¢ s j. For instance, the equations in the
LR.E. Standard (1949) are

8y = 8115 8o = Sap5 S =.Sss; 8y = 284; S5 = 28;
S =28,

where S denotes an infinitesimal strain component,
but this convention is not followed in equations (5)
and the 7, are therefore true tensor components.
The full expansion of equation (4) is given by Birch,*
and the complete list of coefficients C,,, is given in

column 1, Table 3, where, for convenience, only the
suffixes are listed.
The first four terms of equation (4) are

@5=C11173 + Criaine+ Crisins+ Craaming+ . . . - (6)

In view of the summation convention, there are thir-
teen terms of equafion (3) which correspond to the
above four; taking into account equations (5), and the
relations

Cpyr = Crpg = Cpp etc,,

Nij = Nji»
these terms reduce to

@5 = CrnnMi+3Ci1120M M2
+3¢111155M 08+ 6C111128M s+ - -+ 5 (T)

and, comparing equations (6) and (7),

Cii1 = G Crie = 3Cuan10e3
Cris = 3¢y111s35 Craa = 6Cr11103 - (8)

Proceeding in this way, the ratio

R = Opqr/ Cijklmn

can be found, and the values of R for all C,,, are given
in column 1, Table 5.
The application of the strain energy method to the

enumeration of the independent second-order coeffi-
cients ¢;;; in all crystal classes is described by Love
(1927), and it has been applied to the third-order
coefficients of cubic crystals by Birch (1947). In the
remainder of the present paper, this method will be
used for a systematic enumeration of the independent
third-order coefficients in all crystal classes, and in
the isotropic system.

It is convenient to describe the method and to

* The term Cyg7s72 is missing from Birch’s equation.
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present the results in three sections, the first dealing
with the monoclinic, orthorhombic, tetragonal and
cubic systems, the second with the trigonal and hexa-
gonal systems, and the third with the isotropic system.
Birch’s notation is followed, so that the third-order
constants referred to subsequently are defined by
equation (4). To avoid the excessive use of suffixes,
the letter C' is omitted from Tables 3 and 5; an entry
111, for example, stands for C;;; and an entry 3.111—
112 for 3Cy;; —Ciys.

3. Method and results: monoclinic, orthorhombic,
tetragonal and cubic systems

-

The method is described in principle by Birch (1947)
and applied by him in detail to the cubic system, but
for completeness, an account of it is given here.
The invariance of the strain energy with respect to
transformation of axes is expressed by

Cram}+Cruaime+ + -+ = Crua(m1)*+Crra(m1)*na+ - - -
If the transformation is one corresponding with the
symmetry of the crystal (i.e. if it is a covering opera-
tion) then Cjy; = Ciqq, Crie = Cyqp ete. and

Cruni+Craanine+ - - -
= Ciyy (1) +Crae(m P2+ ... . (9)
The co-ordinates @, #, and z, transform according to-
the equations: @; = a;x;, or in full:
Ty = Gyy®1+Qpy %y + Ay T3
Ty = Qa1+ Aoy +ges
Ty = Q15%; +Bas¥s + 35T,

(10)

where the a;; are the direction cosines. The strains
transform according to the equations:

Nu = Califlis » (11)
where %,5,k,1=1,2 or 3. The usual convention is
observed in equations (11) whereby repetition of a
suffix implies summation with respect to that suffix.

The transformations required for present purposes,
and the associated direction cosines, are listed in
Table 1.

The symbols at the head of the columns in Table 1
are based on the Hermann-Mauguin notation (Phillips,
1946), and correspond with the following elements of

symmetry: 1 = centre; 2(z;) = rotation through 180°
about z,; 2(z,) = rotation through 180° about z,;
2(x;) = rotation through 180° about zy; m(x;) = re-
flexion in plane perpendicular to z,; m(z,) = reflexion
in plane perpendicular to x,; m(x;) = reflexion in
plane perpendicular to x;; 4 = rotation through 90°
about z3; 4 = rotation through 90° about z;, followed
by inversion through a centre at the origin (Phillips,
1946).

The direction cosines in Table 1, when inserted in
equations (11), lead to the strain components in
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Table 1. Transformations and direction cosines

Symbol 1 2(x,) 2(xy) 2(,) m{xy) m(x,) m(x3) 4 1
ay = -1 1 -1 -1 —1 1 1 0 0
ayp = 0 0 0 0 0 0 0 -1 1
g = 0 0 0 0 0 0 0 1 -1
gy = -1 —1 1 -1 1 -1 1 0 0
gy = -1 —1 -1 1 1 1 -1 1 -1

Qi3 = Gg3 = Gg; = g = 0
Table 2. Strain components

Symbol 1 2(zy) 2(a,) 2(a,) m(x,) m(x,) m(,) 4 1
’7; = M h T T T Ui T N2 N2
Nz = M2 e N2 N2 M2 N2 M2 771 T
g = s M3 M3 73 73 e M3 s M3
Ny = Na Ma —y Ny Na —Ny /) /] s
Ny = s —7s s /] — s Ns s Ns Na
N = s s s N —7g — N s — g — g

Table 2. Finally, these strain components are put into
equation (9), a procedure which leads to the vanishing
of some of the coefficients C,,, for all operations except
1 and to equalities among some coefficients for the
operations 4 and 4.

Thus, in the case of a four-fold axis, equation (9)
becomes:

0111.77:;'*‘011277%772'*' oo +CuMingt « o Crogmma+. . .
+Cosata+ -« - +Cogsmnst - - -

= Crums+Criommat - - - —Corgamst « - +C1aamimy
+ oo+ CopaWit o ACopsming+- - .

and by equating coefficients of like products of strains,
we obtain:

Ci11 = Cage; Cryp = Ciap; .
Cr1a = Cags = —Chys (6. Cryy = Cpp5 = 0) .

Proceeding in this way the complete scheme of co-
efficients can be derived; the results are given in
Table 3, in which the letter C is omitted, so that the
entries give the suffixes of the coefficients only. The
entry in any space has to be equated to the one on
the same line in column 1. Thus, for example, in the
tetragonal system, Cy,; = Cyyy (i.e. Cyy; is independent)
and Cyy4 = 0. The column headings, reading from top
to bottom are: (1) name of system, (2) the Hermann—
Mauguin and the Schonflies symbols of the classes
(Phillips, 1946), (3) notes if any, (4) the number of
independent coefficients and (5) column number.
The three columns under ‘Monoclinic’ correspond
with different choices of principal axis. It is now
recommended (I.R.E., 1949) that 2, should be regarded
as the principal axis in the monoclinic system, but
in the older literature the principal axis was often
taken as z,, and the schemes of coefficients for both
choices of principal axis are accordingly included in
Table 3. These schemes, and the one corresponding to
the choice of z; as principal axis, are also required
in the derivation of some of the results to be given

later. The scheme for the orthorhombic system
(column 5) is obtained by combining the results for
any two perpendicular two-fold axes or of any two
perpendicular mirror planes (columns 2, 3 and 4).
The scheme for the sub-division of the tetragonal
system (column 7) is obtained by combining the results
for a four-fold axis along ; (column 6) with those for
a mirror plane coinciding with x,%; or x,x, or with
those for a two-fold axis along z, or z, (columns 2
and 3).

Following Birch (1947), the schemes for the cubic
gystem are derived as follows:

(a) Classes 23, 2/m 3.—The cubic axes are two-fold
and the coefficients are accordingly found by imposing
on the scheme for the orthorhombic system (column 5)
the transformation

Ty > Tp; Ty —> Ty; Xy — Xy .

This transformation expresses the invariance of pro-
perties with respect to cyclic interchange of cubic
axes, and corresponds with the existence of trigonal
axes along the cube diagonals. It leads to the relations
among the non-zero orthorhombic coefficients:

Ci11 = Cagp = Cigs; O = Chas = Cags;
Clis = Crap = Cagz; Cryy = Cass = Cage;
Cles = Caaq = C3555 Crs5 = Coes = Caaa;

Clas = Chag; Cuse = Css s

leaving a total of eight independent coefficients which
are set out in column 8, Table 3.

(b) Classes 43 m, 432, 4/m 3 2/m.—The derivation is
similar to that just discussed but the existence of four-
fold cubic axes leads to the additional relations:

Cii2 = Ci13; Cis5 = Cogq

leaving six independent coefficients which are set out
in column 9, Table 3. The numbers of independent
coefficients in all columns of Table 3 agree with those
obtained by Bhagavantam & Suryanarayana (1947,
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Table 3.
Triclinic Monocdlinic Orthorhombic Tetragonal Cubic
1(Cy) 2(C2) 22(Y) 4(Cq) 4mm(Cyp) 23(N Tm(Ty
1(52) m(Cy) 2mm(Cy,) sy 2m(vy 2500 432(0)
2 (cw 222 | Aew | 2200 " 3520w
m mmm m izz(o‘h} m m
Mirror Mirror Mirror mmm
plane = 2223 | plane=xx3 | plane=xxp
Twofold Twofold Twofold
axis =z axis = 1y axis = x3
56 32 82 32 20 16 12 8 6
(1) 2 [C) [C] (5) (6) 7 18) 9)
111 111 111 111 111 111 111 111 111
112 112 112 112 112 112 112 112 112
113 113 113 113 113 113 113 113 112
114 114 ] o o o ] o o
115 o 115 (<} [} o Q [} o
116 o o 116 [«} 116 o (o] o
122 122 122 122 122 112 112 113 112
123 123 123 123 123 123 123 123 123
124 124 o o o] o [ o o]
12§ o 125 (o] [¢] o o [o] o
126 o =] 126 o o o] [+ o]
133 133 133 133 13) 133 133 112 112
134 134 (o] o o o} o [« ]
13§ o 135 o o [o] [~] o o
136 ] -] 136 o 136 ] o o
144 144 144 144 144 144 144 14 4 144
145 [} o} 145 o 145 o o o
146 [} 146 [} o [} o [} o
18§ 155 155 18§ 155 155 185 155 155
156 156 [o] o] ] o] 0 o o]
166 166 166 166 166 166 166 166 155
222 222 222 222 222 111 111 111 111
223 223 223 223 223 113 113 112 112
224 224 -] o o [} o -] o
225 [o] 225 o o ] ] o [o]
226 [-) [} 226 Q -116 [ ° o
233 233 233 233 233 133 133 118 112
234 234 o o o [} o] [ o
235 -] 235 ] Q o o o] o]
236 -} o 236 o -136 o o o
244 244 144 244 244 1§35 155 1606 15§
245 ] o 245 (o] -145 ] [+] o
246 o 146 o [} -] (] o o
255 255 as5s 255 255 144 144 144 144
256 256 o [~ o [+ o] o o
266 266 266 266 266 166 166 1S5S 158§
333 333 333 333 333 333 333 111 111
334 334 o o] © [+] o o o
33§ Q 33§ [e] [+ (3] o o o
336 [¢] ] 336 o o ] [} ]
344 344 344 344 344 344 344 155§ 186
345 a o 345 o [ 6 o o
346 [+] 346 o o o o [+] (o]
3sS 383 3ss 3sSs 38§ 344 344 166 18§
3se 356 o [} o o o ] o
366 366 366 366 366 366 366 144 144
444 444 o o o o o o o
445 L] 445 o o ] o o o
446 =] [} 446 -] 446 o o] (<]
455 455 [} o o o o o o
456 456 456 456 456 456 456 456 456
466 466 o o o o ] o [
535 .0 555 o o o o o o
556 o o §§6 ] =446 Q o o
566 o 566 o -] o o o [}
666 o o 666 o o o o o

1949) and Jahn (1949); the actual schemes also agree
with those derived by Fumi (1951).

4. Method and results: trigonal and
hexagonal systems

In order to deal with the trigonal, hexagonal and iso-
tropic systems it is necessary to consider a general
rotation about the x, axis through an angle 6. In this

case, the direction cosines in equations (10) become,
for a pure rotation,

@y =M, Gy =N, Ay =0,

Qg = =M, Gyy =M, A35=10,

@3=0, ay53=0, a3 =1,
where m = cos 0, n = sin . Substitution of these
direction cosines into equations (11) leads to the

known transformation equations for the strain com-
ponents:
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n = meny +nPn,+2mnyg , The values of ay,...as; for trigonal and hexagonal
N = N2y +miny—2mnyg , axes are set out in Table 4.
= s 12) T
N = my—nys able 4. Values of a,,...as
75 = Pagyt-ms Axis 3 3 6 8
Mo = —mutjy+mntly-+(m? =)l . o Jnle SR S S
Further substitution of equations (12) in equation (9) Z:: - _*_V?; Wi —Wf; é_l/g
leads to the systems of equations (41-410) (see also Qg3 = 1 -1 1 -1
Appendix). Uy = Gp3 = G5 = a3 = 0
Equations (Al
Chy Cliz Clis Cla. Clae Clee Chaz | Chae Cl2es Cées
Ciy=|m | m4? - mfn men* - Pnd nfn? né -mn® mén# -mnd
Cyiz = | 3nfp? | mb 2min® mfn-2mrn® | 2nflen® mn-mPn-mn® | mfn% 2 nftn? 3m?n* [mn* 2P | a2~ 2nfnt 3min®
Ci1e= |bmh |4nir-2min m®-Sm*n? | 2mn* 4m’n® 3nfnZ 3mfn* 4P’ 2 mn -bmn® |Snfn* n® 2mn*- 4 mPn? 3nfn® 3nfn*
Ci22 = |3nfn* |2mP4n® 2t moS  [2min% m® mnemnmin® | mfn2- 2mPn4 Infe? |27t mfn | néad- 2nfn2 -3mn3
Ciz6= |12 |4rn- 4nPrh 4me®| bafnZ bnfn® | 4 Mt 4mn? 4 | mo-Snfn?sSaintnd | 2mhe 2mnt8nPn® |-12 e’ | brfnZ brfn* | 8nt 2min - 2mn® | brfn® bafn?
C 6 = | 120fnZ|4mint 82 4mn-8mh® | 4nfn 8min® 8t 2mn-2mns | mA Smént bafn? |12 mén® | 4mn>8nPe® | Snfabatn% b | bt 3t -3mn®
Copp=| n® men* mn® mtn? mwn? ménd mé mdn mfn? wn®
Co26= | Omn® | 4nPa*2mn* Snfntné 20 - 4 m’n? 3nfnZ 3mén? 4nPnd 2mn®  |-bofn | meSafa? | 2mth - 4’ 3nfn 3 min?
C 166 = | 12| 4 min? 8 m?n* 8mnt4mn® | 4m?nt 8m*n? | 2mn®8m’n% 2mn | SnifnZ bnfn% n®  |12mn? | Brtad 4mn |mOnftn% Smin* | 3nn - Gmied 3mn®
C pe6= | B |-Bm’n? 4% 4fn® | 8mn® 4 mint 4min? 2mn-4mind 2mel-8mPn® | 4t 4Pt 4t 2min -2 mnS| me 3nfnd 3mfntn®
Equations (A2)
Cha |Chs| Ciza Clas Cias Cise Coze | Czas | Ciae Cise Cles Csee
Cia= | m® nfn  |afn? e’ - it ~mh? mn4 ns - m2n? -t m°n2 mln®
Cys= |~nfn |m® [-n?d® mn? min2 ~afn -n% mn* mné -mén? -min® mn?
Ci24= | 20%% |20fr® | memn* m*n+ mfa-m®  [mnimn*  [2mn?  |2afn® | nfndimtn |mat mfn? |- 2mPn? -2m?n®
Cies= | -2mPn® [2mn? | -a*n-n®  [mPemn® matmin? mn-mdd  [-20%® [2mPn? [malmnt |mEinimta [2mind -2mtn?
Cree= | 4mfn |4nPn2| 2080t 2m'n [2mnt20Pn? |m3mdn2  [mén-3min®  |-4afn® |-4mn® | 3m*nimn® |3mi’-n®  [2m’n>2m*n | 2mnt 2m*a?
Cise= | -4m%? |4nfh |2nP02 2mn#|2nfek 2nfn |3minim'n  |m-3mn2  |4mn* [-4mdd|a23mi®  {3m*nimn® |2mn%2mn® [2mPn*2m*n
Caz4= |mn* |05 |nPn? m?n® m?n® mn# m$ m*n m*n m’n? m’n2 m2n3
Cazs= | -n5  |mn* |-nfnd mn2 -mn# m?n® -nfn |m$ -m’n2 mn -mn® m’n?
Case= | 4mPn® |4mn* | 2nfn-20%0% 2002 2mn* [3nPnZ—mn* [3mn>n®  |-4nfn |-4mn? [mS-3aPn?  [mfn- 3min® |2mén-2mnd | 2mPnd 2mnt
Case= | -4mn* [4mPnd | 2ma%-20Pn?{2nfn - 203 (0% 3mPn®  [3nPnZmn®  |4minZ |-4mn |3mintafa |mS- 3m’n? [2ma%2m*e? | 2min -2min®
Case= | 4702 [4m203|-4m*n2  |-4mn®  |2mfn-20fn® {2m0n%2mo* [4mn2 | 4m®n® | 2wt 2m'n | 2mn® 2m*n?d m* 2mend mn*| m'n - 2mPndsn®
.Cseo’; -4mln’ [4mn? | 4min® -4mn?  {2mn%20n? | 2m% -2mn® | -4 [ 4mn2 | 2mP0 2mn® | 2 2mi*n| 2min® m®n - n® [ 2mY0d mn*
Equations (A3) Equations (A4)
Ciis Cias Cise Czas{ Clse Clse Cisa {Ciss Cisa| Cass 3a6 | Case
Cys =[m* |m%? -m®n n4 -mn? m%n? Cisa=|m® |man |mn?2 [0 |-mD [-mn
Cizs = |2m*n? | n* mn-mn® | 2m?n? [matmta  |-2mPn? Ciss =|-m?n {m® i-n® |mnZ [mn2 |-m?n
Cis6 =|4mn |2ma*-2m’n | mt3m'n® |- 4mn?| 3ménZn® | 2mn-2m'n Case=|ma? [0 lm® |mn {mn  |mo?
Cas=|n* mén? mn3 m* mn mén? Cozs=|-0° |mn? |-mfn |m? -mnZ |m?n
Ca36=|4mn’ |20’ -2mn®| 3n%n2n*  |<4m®n | m*-3men? | 2w’ -2mn® Csa6=| 2m*n |2mn?|- 2m%n|-2mn?| m*-mn?|m?n-n?
Cie6 = | 4men?| - 4mtn? 2mn-2mn3| 4m2n2| 2mad- 2 min| ot 2m2ndn Y Cys6=|-2mn?|2mén[2mn? |-2m?n | ntm®n {m*mn
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Equations (A5)
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Equations (A7)

] 1
Caes = MCyaq+mnCiyqs+02Ciss

P 7 7 ; 7 ; .
Cias Cus Ciss| Caas Céts Czss Cles C4se Cise
Csas = -2mnCige+(mn?)Clast2mnCiss
=|m+ g 2 2 3 n¢ -min -mhn? -mn®
Cige =|m m°n nfr? mn?  |mn Cuss = NCheemmnChas +miCiss
Cres =|-2m°n |mtm%?  [20®0 F2mn® (m020*  [2mn® |2m%n? mn m®n -2alel
Ciss =|m?n?  [|-mn m* [t |-mad min?  |-mn? m?n? -m’n
n
Cage=|mn? |mn® ot m*  [m’n mn?  jm*n m2n? mn® Equattons I(AB) - - —
22 22 Caaa= m3Chus +mnClaqs+mn2Clss+ n°Csss
Caas=|-2mn® |m*n%n?  [2mn® [-2m%n [m*m?n? [2min |-2m%n mia-mnd | 2m%n , s Ao e P
s Cars = ~3mnCiasa+(m3-2mn ) Chas+(2min-n2)Clsst Imn2Clss
Cass=|n* -mn® min? |mén?  |-m®n m*  [ma® -m®n m’n , ,
* 22 3 2 2 4 22 s e Cass= 3miCass+(n® 2m2n)Cias+(m3-2mn2)Cass+Imn Csss
Cuss=[2m’n [2m%n 2mn® F2m’n [-2m? [<2mo’ [mtmia?  [mih-mnd (mPnZat
. 444 +mntCias - nénCiss +m3C
Csss = -n3Casa +mniCass -mnCqss +m*Csss
C4s6= |-4m%n?{2m'n-2mn®|4ntn? [4afn? |2mn- 2m’n| -4 aln2] 2mn 2m’n| -2 min? 04 2mPn - 2mn
3 2
Csse=|2mn® |2mi? 2m’n 1-2mn® |2m%n? -2m*n |mn3n®  [maim’n mim?n

Equations

GO

r 1 ]
Cisy = m2Cy55+n2Cyyy -maCyse

1 1
Cass = n2 Cyy #m2Ca53 +mnC 44

Case = 2mnCly5-2mn Chgy + (m-n®) C3 36

The direction cosines for 3 in Table 4 correspond to
a rotation through 120°, followed by inversion through
a centre at the origin, and those for 6 to a rotation
through 60° followed by inversion through the centre
(Phillips, 1946). These direction cosines are obtained
simply by reversing the signs of those for the simple
axes; it is easy to verify that this change leaves the
strain transformation equations (12), and therefore
equations (A1) to (410), unaltered.

Substitution of the values of m and n from Table 4
into equations (A1) to (A410) leads to systems of
simultaneous equations with numerical coefficients, of
which the solutions are given below.

Equations (A1): trigonal and hexagonal systems
Clas = 3013 +C11—3C5,;
0166 = _60111_ Ci12+9C50;

266 60111_0112_30222§ 0126 = '—20116;

i . —_ —4
0226 - 01163 666 — '8'0116‘

Equations (A2): trigonal system
0156 = 20114+30124; 0224 = _0114—0124;
0256 = 1245

14— C1a45 Cye6 =

0146 = _20115_30125; 0225 = _0115_0125;

246 = —2C115+C1a5; Cge6 = 2C 105

Equations (A2): hexagonal system
0114 = 0115 = 0124 = 0125 = 0146 = 0156 =
0256 = Uyee = 0566 = 0.

224 = Logs = Ligge =

Equations (43): trigonal and hexagonal systems
0136 = 0236 =0; 0113 = 0223; 0366 = 20113_0’123-

Equations (A4): trigonal system
Ouss = —Olss; Ogpe = 201345 Cogs = —Cligs;
346 = _20135-

Equations (AC))
Cy3s = mCsya+nCiss

Cs3s = -nC3a +mCiss

Equation (AIO)

7
Cyss = Cias

Equations (A4): hexagonal system
0134 = 0135 = 0234 = 0235 = 0346 = 0356 =0.

Equations (A45): trigonal and hexagonal systems
0145 = _0245 = 0446 = _055s§ 0144 = 0255;

165 = Coaa; Cysg = 2(C155—C1aq)-

Equations (A6): trigonal and hexagonal systems
Clss = Cagz; gy = 0.

Equations (A7): trigonal and hexagonal systems
Cs44 = Css55 Cyy5 = 0.

Equations (A8): trigonal system
Cgss = —3Cyyq; Cyss = —3C 5.

Equations (A8): hexagonal system

0444 = Lys = 0455 = 0555 = 0.

Equations (A9): hexagonal and trigonal systems
U334 = Cgg5 = 0.

Equation (A10): hexagonal and trigonal systems
Csss = Ciss.

The above results are summarized in columns 3 and

5 of Table 5, where, just as in Table 3, the letter (
is omitted. Reading from top to bottom, the column
headings give: (1) name of system, (2) the Hermann—
Mauguin and the equivalent Schénflies symbols (Phil-
lips, 1946), (3) the number of independent coefficients,
(4) notes, if any, and (5) column number.

The results for the hexagonal system can al-
ternatively be derived quite simply from the trigonal
coefficients by combining the results for a three-fold
axis along z; (column 3, Table 5) with those for a
two-fold axis along z; or a mirror plane z,z, (column 4,
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Table 5.
Triclinic Trigonal Hexagonal Isotropic
1(C) 3(Ca) 3mi(C3) 6(Cs) 8m2(Day)
1152 3iC3p 32(D3) B(Caw 6mm (Cey)
3Z0s0 e o 0e)
R ; S22
Mirror mimm (Dek)
plane = xox3
Twofold
axis= 1y
56 20 14 12 10 3
_n 2 @) ) (5) (6) )
1 11 1 111 ey 101 111
3 12 112 12 1 112 112
3 13 13 113 31 1% na
6 114 114 11 [} [ o
6 1us 1us§ -] ] ] ]
] 116 16 [ 16 o o
3 122 34134112 -3.222 3.411+112-3.222 ERTTRRTLIL K t1Y 341141125222 112
L 123 123 3 123 gt <) 123
1 12¢ 124 124 [ o [
12 18 125 o ° 3 o
12 126 -2.116 [} 2116 o °
3 133 133 3 n3 133 1
ey 134 13 13 o Q (-]
12 135 135 o ) o o
12 136 [} -] o o ]
12 144 144 144 144 144 2.112-123
2¢ 145 145 ] ws o o
24 146 ~2.115~3.125 o ] o o
12 155 153 155 153 133 [ STTETT Y
ETS 156 11443104 114+3.124 ) o [}
2 166 ~6.111-112+9.222 -6.111-11249.222 | ~6.111-112+922% | -€111-112+0.222 3.111-112
1 222 222 222 222 a2 113
3 223 113 w3 113 113 1
6 24 ~114-124 -114-12¢ o o o
6 225 ~115-128 o [} L} [}
6 226 16 o 116 o o
3 233 13 133 gt ) 133 1
12 234 -13¢ -1 o o ]
2 ns -138 o o [ -]
12 06 o o [} o o
e 244 153 158 188 153 EXSTERELY
%" 243 =143 o ~148 -] o
24 246 “2.115+128 o -] o ]
12 238 144 144 144 144 2.412-123
24 256 2.114~134 2.114-12¢ o o ]
Ty 266 6111-112-3.122 6.111-112-0222 6411~112~3.222 6.111-112-3.222 3111212
1 333 333 333 333 333 1u1
6 334 o ] o o [}
6 »s o o o ] )
6 36 o o ° ] ]
-3 e 344 344 M4 344 Ain-12
24 343 ] -] o [+ o
2¢ 346 -2.135 o o [ o
12 383 844 44 344 e [ SEREEL Y
24 356 2.4 2.154 o o o
1 366 2.115-123 2.113-123 210 -123 2313128 2112123
[} 444 ‘44 44 o ] )
2¢ 443 445 ° o o °
24 46 145 o 145 o o
24 433 -3.444 -3, 444 o o o
48 456 2.185-2.144 A155-244 2.163-2.144 2,455~ 2144 6.111 6412 $2.4X0
2% 466 4 1e -] o L]
3 ss3 2453 o -] o L]
" sse ~145 o 148 o o
24 see 1.138 o ° o ]
[} 666 =4.116/3 [ ~ 40603 ) o

Table 3); this derivation is related to those discussed
by Fumi (19524, c). Column 4, Table 5, is derived by
combining the results of column 3, Table 5, with those
of column 2, Table 3; and column 6, Table 5, by
combining column 5, Table 5, either with column 2
or column 3, Table 3.

The schemes of independent coefficients in columns
3-6, Table 5, agree with those given by Fumi (1952b),
but it is necessary to note that Fumi’s table
refers to the c;um, constants, and in comparing his

AC6

results with Table 5, the complete set of equations
similar to (8) must be taken into account. For example,
Fumi gives an equation which in the present notation
is:

Crize22 = C111111 —Cozoo22TCri11025 (13)
Now from column 1, Table 5,
Clae = 3C1192005 Cin1 = Crannns
Casa = Cozzons; Crip = 3Cynne - (14)

22
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Substituting (14) in (13):

%0122 = 0111_0222+%0112:
ie. Crpp = 30111—3Cp0+C12

in agreement with the entries in Table 5.

5. Isotropic system

Column 7, Table 5, headed ‘Isotropic’, actually gives
the scheme of constants obtained by combining the
results for maximum symmetry in the cubic and
hexagonal systems (column 9, Table 3 and column 6,
Table 5). This scheme contains three independent
constants, in agreement with the number predicted
by Jahn (1949) and by Venkatarayudu & Krishna.-
murty (1952); the actual scheme of coefficients also
agrees with those given by Murnaghan (1951) and
Krishnamurty (1952).
The full form of @; from column 7, Table 5, is:

@5 = Craami+ Criaine+ Craahins + Criamms + CrasMans
+ 011277177§+ (20112— 0123)’71’72"‘ (3Cma— 0112)771772
+ (3C 11— Craz) s+ Cruas + Crualana + Craena
+(8C111— Cra2)memi+ (20112 — Cras)nam3
+(8Ch11—Cliz)neme+ Cruym3+ (30111 — C1i2) a7
+ (30111~ Cra2)smi + (20110 — Cra5) 7375
+(6C111—6C112+2C 125)MaM57s - (15)

In terms of the invariants of strain (Love, 1927)

I, = ny+net+ms,
I, = 1=+ 11— N5+ 72— »
Iy = my7oMs+20NsMe—M17a—NeT3 —"s7e »

equation (15) becomes:

@3 = Cin(I3+3[1;—1,1,))
+Cna(l1 1y —315)+Crasl5 . (16)

If the fundamental constants are taken as Cjyq, Cis5
and Oy, equation (16) can be written rather more
simply as:

@3 = Crui—Cussli Lo+ 3C565 - (17)
It is well known (Love, 1927; Murnaghan, 1951) that
for terms of the second degree in the strains,

P2 = %(l+2‘u)lf—2,ul2 s (18)

where A and g are the Lamé constants expressible in
terms of the usual second-order elastic constants by
the equations

A+2u = ¢y, u = g = }(¢11—C1a) - (19)

Thus, when terms of the second and third degree in
the strains are taken into account, the strain energy
of an isotropic body is, by equations (2), (17), (18)
and (19),

20 = ¢y I3 —4cgely+2C11, 13 —2C 551 Lo+ Oyl -

‘THIRD-ORDER’ ELASTIC COEFFICIENTS

As mentioned earlier, Kaplan (1931) found that ¢,
contained two coefficients only; in terms of the present
notation, the additional relation found by Kaplan is

0123 = 20112_30111 .

Kaplan derived this equation by considering the most
general rotation of the axes, i.e. one in which all of
the direction cosines in equations (10) differ from zero,
but the exact details of the derivation are not clear,
and the writer has been unable to verify it. (An
attempt to communicate with Dr Kaplan was un-
successful.)

It does not seem possible, however, for a relation
of this type to exist without the introduction of
special assumptions such as those discussed by Herpin
(1949). Equations (16) and (17), which have now in
effect been derived independently by Murnaghan
(1951), Krishnamurty (1952) and the writer, show that
@; is expressible in terms of three coefficients and of
the three strain invariants. By hypothesis, the co-
efficients of an isotropic solid are invariant for any
rotation, and so, of course, are the strain invariants.
Thus the imposition of any rotation whatsoever on
equations (16) and (17) will simply lead to an identity
and there can be no further reduction in the number of
independent coefficients.

6. A physical application

Direct application of the concept of third-order elastic
coefficients to physical problems is limited by two
circumstances, one theoretical in that the algebra
becomes very complicated, particularly when applied
to crystal systems containing large numbers of co-
efficients, the other practical in that application of
high stresses to crystalline materials usually results in
slip along definite planes, a mode of deformation to
which the third-order coefficients do not apply.

Birch (1938), however, has minimised the first
difficulty by considering isotropic materials, and
materials belonging to the cubic group of maximum
symmetry (Birch, 1947), and has avoided the second
by dealing with an arbitrary homogeneous infinitesimal
strain superimposed on a finite hydrostatic strain.

A specific problem solved by Birch (1947) is the
effect of hydrostatic pressure on the elastic stiffnesses,
¢z of a material belonging to the cubic group of
maximum symmetry and therefore possessing six
independent third-order constants. For such a material,
Birch derives the equations

¢ = €13+ 7(264,+2615+6C, 1, +4C1s5) ,

¢z = 12+ M(Crag+4C 10— €11 —Cy5)
Caa = Cat7(C1y+2¢19+C4y+3C144+Clg)

(20)

where ¢, ¢,, and ¢,, are the stiffnesses measured at
zero hydrostatic pressure; the primes denote the
apparent values of the stiffnesses measured under a
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hydrostatic pressure P; and # is a quantity defined
by the equation
ViV, = (1+2n)%,

V, being the original volume and V the volume when
compressed by the pressure P.

The apparent stiffnesses of the cubic crystals
KCl, NaCl, CuZn, Cu and Al have been measured by
Lazarus (1949) up to hydrostatic pressures of 10,000
bars, using a pulse transmission method. Lazarus
plotted the ratio c;/c; against P and obtained
straight-line relationships. If, however, equations (20)
are correct, the ratic should be a linear function of 7.
The conversion from P to # is easily accomplished
with the aid of equation (21), in conjunction with the
equation

21

1-V|V, = aP—bP?,

using for the purpose the values of @ and b recorded
by Lazarus for his five materials.

The resulting graphs are shown in Fig. 1, from which
it can be concluded that the use of # in a straight-line
relationship with c;fc; is empirically as justifiable
as the use of P, and, from a theoretical point of view,
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the use of # is preferable since it is in accordance with
equations (20).

Assuming the correctness of these equations, esti-
mates can be made of the numerical values of the
combinations (6C;1;+4C,;,), (Cra5+4C,1,) and (3C 4, +
C'166)- In fact, denoting these combinations for brevity
by C,, C, and C,, it follows from equations (20) that

Co = c118a—2(¢11+¢y5)
Cy = C1a85+C11+C15 5
Cq = C4q84—C11—2015—Cyy ,

(22)

where
8, 18 the slope of the (c;,/c,,) v. n graph,
8y is the slope of the (c;s/c;y) v. 7 graph,
84 is the slope of the (cy4/c,,) v. 9 graph .

Numerical estimates of s,, s, and s; were obtained
from Fig. 1, drawn to a larger scale, and these, when
inserted into equations (22), together with the zero
pressure stiffnesses measured by Lazarus, yield the
values of C,, C, and C; given in Table 6; it is of
interest that all of the (s in this table are negative,

22‘
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and are numerically about an order of magnitude
larger than the stiffnesses c;.

Table 6. Third order constanis
Unit = 10" dyne cm.™?

Material KC1 NaCl CuZn Cu Al
- Cy —81 —100 —208 —249 —225
Cy — 15 -- 14 —114 —133 — 32
Cya — 35 — 11 —135 — 84 — 74

The information on the third order constants
yielded by the above treatment is unavoidably in-
complete in giving effectively only three constants out
of a possible six. In addition, the values obtained are
probably not highly accurate, since they contain not
only the original errors of the experiments, but also
the errors associated with reading the values from
Lazarus’s graphs. It appears, however, that no
numerical estimates of the third-order constants have
hitherto been published, nor have methods of measur-
ing them been suggested, and the present analysis has
been carried out as a first step in remedying these
deficiencies.

In principle, solutions for the effect of hydrostatic
pressure on stiffnesses could be obtained for materials
of any symmetry by appropriate modification of the
treatment applied by Birch to cubic materials, but the
labour involved in the mathematical development
would be considerable, and might be prohibitive for
systems of low symmetry.

In the case of isotropic materials, the relations

Craa = 2015—Cla5; Cr6 = 3C111—Cia;
Caa = $(C11—C12)
reduce the three equations (20) to two:
e = ey +0(201+2¢1,+C)
€12 = C1p+7(Cy—C13—C1) -
Experiments similar to those of Lazarus, if carried out
on isotropic materials, would therefore effectively yield
two out of the three independent third-order constants,

but the data required for these calculations are not at
present available.

‘THIRD-ORDER’ ELASTIC COEFFICIENTS
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APPENDIX

Equations (41-410) above are the transformation
equations for the third-order coefficients corresponding
to a rotation through an angle 0 from 2, towards z,
about the z; axis. The equations are to be read
horizontally, e.g.

? ’ ?
Ciy = m8C 13 +mAn2C 1, —mnChye+ . . .

where m = cos 0, n = sin 6.

References

BHAGAVANTAM, 8. & SURYANARAYANA, D. (1947). Nature,
Lond. 160, 750.

BHAGAVANTAM, S. & SURYANARAYANA, D. (1949), Acta
Cryst. 2, 21.

BircH, F. (1938). J. Appl. Phys. 9, 279.

BircH, F. (1947). Phys. Rev. 71, 809.

Fowuz, F. G. (1951). Phys. Rev. 83, 1274.

Fou, F. G. (1952a). Acta Oryst. 5, 44.

Fuwmi, F. G. (1952b). Phys. Rev. 86, 561.

Fomi, F. G. (1952¢). Acta Cryst. 5, 691.

HerriN, A. (1949). C. R. Acad. Sci., Paris, 229, 921.

INsTITUTE OF RADIO ENGINEERS. (1949). Proc. Inst. Radio
Engrs., N. Y. 37, 1378.

Jann, H. A. (1949). Acta Cryst. 2, 30.

Karran, C. (1931). Phys. Rev. 38, 1020.

KrisaNnamorTy, T. S. G. (1952). Curr. Sci. 21, 8.

Lazarus, D. (1949). Phys. Rev. 76, 545.

Love, A.E.H. (1927). The Mathematical Theory of
Elasticity, 4th ed. Cambridge: University Press.

Mur~NaGHAN, F.D. (1951). Finite Deformation of an
Elastic Solid. New York: Wiley; London: Chapman
and Hall.

Privwres, F. C. (1946). An Introduction to Crystallography.
London: Longmans Green.

VENEATARAYUDU, T. & KrISENAMURTY, T. S. G. (1952).
Acta Cryst. 5, 287.



